980 research outputs found

    A nilpotent IP polynomial multiple recurrence theorem

    Full text link
    We generalize the IP-polynomial Szemer\'edi theorem due to Bergelson and McCutcheon and the nilpotent Szemer\'edi theorem due to Leibman. Important tools in our proof include a generalization of Leibman's result that polynomial mappings into a nilpotent group form a group and a multiparameter version of the nilpotent Hales-Jewett theorem due to Bergelson and Leibman.Comment: v4: switch to TeXlive 2016 and biblate

    Simultaneous dense and nondense orbits for commuting maps

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.We show that, for two commuting automorphisms of the torus and for two elements of the Cartan action on compact higher rank homogeneous spaces, many points have drastically different orbit structures for the two maps. Specifically, using measure rigidity, we show that the set of points that have dense orbit under one map and nondense orbit under the second has full Hausdorff dimension.V. B. acknowledges support received from the National Science Foundation via Grant DMS-1162073 M. E. acknowledges support by the SNF (200021-152819). J. T. acknowledges the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 291147

    Simultaneous dense and nondense orbits for commuting maps

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.We show that, for two commuting automorphisms of the torus and for two elements of the Cartan action on compact higher rank homogeneous spaces, many points have drastically different orbit structures for the two maps. Specifically, using measure rigidity, we show that the set of points that have dense orbit under one map and nondense orbit under the second has full Hausdorff dimension.V. B. acknowledges support received from the National Science Foundation via Grant DMS-1162073 M. E. acknowledges support by the SNF (200021-152819). J. T. acknowledges the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 291147

    Rigidity and Non-recurrence along Sequences

    Full text link
    Two properties of a dynamical system, rigidity and non-recurrence, are examined in detail. The ultimate aim is to characterize the sequences along which these properties do or do not occur for different classes of transformations. The main focus in this article is to characterize explicitly the structural properties of sequences which can be rigidity sequences or non-recurrent sequences for some weakly mixing dynamical system. For ergodic transformations generally and for weakly mixing transformations in particular there are both parallels and distinctions between the class of rigid sequences and the class of non-recurrent sequences. A variety of classes of sequences with various properties are considered showing the complicated and rich structure of rigid and non-recurrent sequences

    An Extension of Weyl’s Equidistribution Theorem to Generalized Polynomials and Applications

    Get PDF
    Author's accepted manuscript.This is a pre-copyedited, author-produced version of an article accepted for publication in International Mathematics Research Notices following peer review. The version of record Bergelson, V., Knutson, I. J. H. & Son, Y. (2020). An Extension of Weyl’s Equidistribution Theorem to Generalized Polynomials and Applications. International Mathematics Research Notices, 2021(19), 14965-15018 is available online at: https://academic.oup.com/imrn/article/2021/19/14965/5775499 and https://doi.org/10.1093/imrn/rnaa035.Generalized polynomials are mappings obtained from the conventional polynomials by the use of the operations of addition and multiplication and taking the integer part. Extending the classical theorem of Weyl on equidistribution of polynomials, we show that a generalized polynomial q(n) has the property that the sequence (q(n)λ)n∈Z is well-distributed mod1 for all but countably many λ∈R if and only if lim|n|→∞n∉J|q(n)|=∞ for some (possibly empty) set J having zero natural density in Z⁠. We also prove a version of this theorem along the primes (which may be viewed as an extension of classical results of Vinogradov and Rhin). Finally, we utilize these results to obtain new examples of sets of recurrence and van der Corput sets.publishedVersio

    Nonconventional Large Deviations Theorems

    Full text link
    We obtain large deviations theorems for nonconventional sums with underlying process being a Markov process satisfying the Doeblin condition or a dynamical system such as subshift of finite type or hyperbolic or expanding transformation

    Retargeting the Coxsackievirus and Adenovirus Receptor to the Apical Surface of Polarized Epithelial Cells Reveals the Glycocalyx as a Barrier to Adenovirus-Mediated Gene Transfer

    Get PDF
    Lumenal delivery of adenovirus vectors (AdV) results in inefficient gene transfer to human airway epithelium. The human coxsackievirus and adenovirus receptor (hCAR) was detected by immunofluorescence selectively at the basolateral surfaces of freshly excised human airway epithelial cells, suggesting that the absence of apical hCAR constitutes a barrier to adenovirus-mediated gene delivery in vivo. In transfected polarized Madin-Darby canine kidney cells, wild-type hCAR was expressed selectively at the basolateral membrane, whereas hCAR lacking the transmembrane and/or cytoplasmic domains was expressed on both the basolateral and apical membranes. Cells expressing apical hCAR still were not efficiently transduced by AdV applied to the apical surface. However, after the cells were treated with agents that remove components of the apical surface glycocalyx, AdV transduction occurred. These results indicate that adenovirus can infect via receptors located at the apical cell membrane but that the glycocalyx impedes interaction of AdV with apical receptors

    Effects of rapid prey evolution on predator-prey cycles

    Full text link
    We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (i) large increases in cycle period, (ii) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (iii) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003] with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems [Andersson and Levin 1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure
    • 

    corecore